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Hydrodynamics of pair-annihilating disclination lines in nematic liquid crystals

D. Svensˇek* and S. Žumer
Oddelek za Fiziko, Fakulteta za Matematiko in Fiziko, Univerza v Ljubljani, Jadranska 19, SI-1000 Ljubljana, Slovenia

~Received 24 April 2002; published 23 August 2002!

The pair annihilation of straight line defects with strength61/2 in bulk nematic systems is studied numeri-
cally, considering a full coupling of orientational degrees of freedom and hydrodynamics. This work is based
on the generalization of the Ericksen-Leslie theory to the tensor order parameter as proposed by Qian and
Sheng@T. Qian and P. Sheng, Phys. Rev. E58, 7475~1998!#. The approach is particularly suited for the late
stages of the annihilation process. It is confirmed that the11/2 disclination line moves considerably faster than
the 21/2 one~e.g., twice as fast! due to the hydrodynamic flow. Symmetries of the important stress tensor
terms upon inverting the sign of the winding number and performing a homogeneous in-plane rotation of the
Q-tensor eigensystem are discussed. The stress tensor terms that dominantly contribute to the advective flow
and to the flow asymmetry are identified.

DOI: 10.1103/PhysRevE.66.021712 PACS number~s!: 61.30.Jf, 61.30.Dk, 61.30.Gd, 47.15.Gf
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I. INTRODUCTION

The research of defects in order parameter fields co
sponding to various condensed matter systems is driven
many aspects of motivation. Defects can be readily obser
either directly ~e.g., by optical methods! or through other
physical properties of the system, which are crucially mo
fied in the presence of defects. In many cases of applica
defect-free structures are required, while in the others~e.g.,
in some liquid crystal displays! structures containing defect
might be essential. In the latter case, one must know so
thing about static or dynamic properties of defects. Theor
cally, defects offer a rich playground for mathematically o
ented excursions. Their topological properties can be v
interesting and nontrivial, if only the order parameter h
enough degrees of freedom. Defects play a decisive rol
any phase transition, since in the late stages the orderin
governed exclusively by the dynamics of the defects crea
at the transition. An important part of motivation arises fro
the universality of defects, i.e., they can occur in any sys
with a rich enough order parameter. Their major proper
are independent of the underlying physics, determined so
by symmetries and dimensionalities of the order parame
the defect and the system. Lately the aim towards the exp
tation of this universality has been experienced in the a
motivating the research of laboratory-friendly condens
matter systems such as liquid crystals in order to yi
knowledge in completely different realms of physics~e.g.,
the physics of the universe, elementary particles, and fie!
@1–3#.

In order to study the statics or dynamics of defects
nematic liquid crystals, the full tensorial description of t
nematic ordering must be considered. If one wants to incl
hydrodynamic effects, normally described by the Ericks
Leslie theory@4,5#, a generalization of the latter is require
to describe the coupling of the tensorial dynamics and
flow @6–8#. The director description is not adequate for t
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treatment of defects, in particular, it fails when studying th
dynamic properties. One might expect to remedy the pr
lem by allowing a variation of the degree of order. It tur
out, however, that in the defect center the equations so
tained are ill conditioned numerically and incapable of ac
rately describing the hydrodynamic part of the problem.

To our knowledge, there have been only a few pap
published on defect dynamics including hydrodynamics. T
Effect of hydrodynamic flow on kinetics of nematic-isotrop
transition has been studied by Fukuda@9#, a similar topic,
however with a different method—the lattice Boltzmann
gorithm, has been studied by Dennistonet al. @10#. Recently
a paper on the hydrodynamics of topological defects w
published by To´th, Denniston, and Yeomans@11#. They stud-
ied the effect of back flow and elastic anisotropy on the p
annihilation of straight line defects with strengths61/2,
again using the lattice Boltzmann algorithm. Their treatme
however, is not based on the Ericksen-Leslie theory and
volves only two viscous coefficients.

The aim of our paper is to present the solution to the p
annihilation of straight disclination lines with strength
61/2, starting from the generalization of the standa
Ericksen-Leslie~EL! theory to the tensor order paramet
@8#. We consider an unconfined bulk system. The generali
theory involves the same number of viscous parameter
the EL theory, expressed as simple linear combinations of
Leslie viscosity coefficients. Since the Leslie coefficien
represent the standard way of materializing the viscous
sipation in nematics and enough data is available for m
compounds, at least on thea2 and a3, we believe, that the
present work will be appreciated in the field.

An alternative ~complementary! method to the lattice
Boltzmann algorithm used in Ref.@10# is to be demonstrated
based on solving partial differential equations for the ord
parameter and the velocity field. Symmetry properties of
stress tensor with respect to changing the sign of the wind
number will be discussed, resulting in a simple yet accur
identification of stress tensor terms, responsible for the
served flow asymmetry and the acceleration of the annih
tion process. Further, it is to be shown that the hydrodyna
effect depends on the director phase angle, i.e., unlike
©2002 The American Physical Society12-1



o
ot
er

a
e
y
he

es

q.
-
h

h

liz

p

tr
th
a

fo
th

of

he
he
-

and

w-

als

ors
p-
m
-

.
ing
ple

r

-
the
In
,
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order parameter dynamics in the case of elastic isotropy c
sidered here, it is not invariant under the homogeneous r
tion of directors. Again the corresponding stress tensor t
will be pointed out.

It should be stressed that although the tensorial appro
works very well at small defect separations, the passag
1 mm length scales that can be resolved experimentall
hindered by enormous computational complexity of t
problem and the large~several orders of magnitude! ratio of
the defect separation to the size of the defect core.

II. DYNAMIC EQUATIONS

The starting point is the bulk free energy density expr
sion in terms ofQ ~@12#, p. 156!,

f 5f~Q!1 1
2 L] iQjk] iQjk , ~1!

where the homogeneous part is given by

f~Q!5 1
2 AQi j Qj i 1

1
3 BQi j QjkQki1

1
4 C~Qi j Qj i !

2. ~2!

It was taken into account that C1(Qi j Qj i )
2

1C2Qi j QjkQklQl i 5(C111/2C2)(Qi j Qj i )
2 and a new con-

stantC5C11C2/2 was introduced. In the elastic part of E
~1!, only the term withL1[L is retained, resulting in isotro
pic elasticity. Terms of third order inQ are needed to reac
the splay-bend elastic anisotropy@13#, the effects of which
have been studied in Ref.@11#.

Requiring theQ tensor to be traceless and symmetric, t
Euler-Lagrange equation for the functional

F5E dV@ f ~Q,¹Q!2lQi i 2l ie i jkQjk# ~3!

gives the homogeneous and elastic part of the genera
force on the tensor order parameterQ,

hi j
he5L ]k

2Qi j 2
]f

]Qi j
1ld i j 1lkeki j . ~4!

The Lagrange-multiplier terms merely state that the isotro
and antisymmetric components of Eq.~4! are not specified
and have to be determined by the constraints, i.e., the iso
pic and antisymmetric parts must be subtracted from
force hi j

he . The elastic stress tensor is obtained in a stand
manner as

s i j
e 52

] f

]~] iQkl!
] jQkl . ~5!

The viscous stress tensor and the viscous generalized
on theQ tensor are given by a tensorial generalization of
Ericksen-Leslie theory@8#,

s i j
v 5b1Qi j QklAkl1b4Ai j 1b5QikAk j1b6QjkAki1

1
2 m2Ni j

2m1QikNk j1m1QjkNki , ~6!

2hi j
v 5

1

2
m2Ai j 1m1Ni j , ~7!
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where

Ni j 5
dQi j

dt
1WikQk j2QikWk j , ~8!

with the material time derivative dQi j /dt5]Qi j /]t
1(v•¹)Qi j and the symmetric and antisymmetric parts
the velocity gradientAi j 5

1
2 (] iv j1] jv i) and Wi j 5

1
2 (] iv j

2] jv i). Only those terms have been included that in t
uniaxial limit with a constant degree of order reduce to t
standard Leslie viscous termsa i . Thus, the viscous coeffi
cients in Eqs.~6! and ~7!, linked by the relationm25b6
2b5, can be expressed in terms of the Leslie coefficients
the constant value of the scalar order parameter@8#.

Finally, the equation of motion for theQ tensor is the
symmetric traceless part of

hhe1hv50, ~9!

with the constraints

Qi i 50, e i jkQjk50. ~10!

The generalized Navier-Stokes equation within the lo
Reynolds-number approximation@omitting the nonlinear ad-
vective derivative term (v•“)v#, regularly made for the or-
der parameter elasticity driven dynamics in liquid cryst
@14,15#, reads

r
]v i

]t
52] i p1] j~s j i

v 1s j i
e !, ~11!

with the densityr and the viscous and elastic stress tens
given in Eqs.~6! and ~5!. Usually, also the steadiness a
proximation is made, omitting the time derivative ter
@14,15#. The pressure fieldp must be such that the incom
pressibility condition

] iv i50 ~12!

is satisfied. Equation~9! and the stationary version of Eq
~11! can both be put to a dimensionless form by introduc
a characteristic length, e.g., the correlation length, a cou
of nanometers usually,

j5A3

2

L

f9uS0

, ~13!

with Qi j 5S/2(3ninj2d i j ) and f9uS0
the equilibrium value

of the second derivative of Eq.~2! with respect to the scala
order parameterS, and a characteristic time

t5g1j2/K5m1j2/L, ~14!

where g1 is the director rotational viscosity andK is the
director elastic constant. The timet is the characteristic re
laxation time of the order parameter deformation on
length scale ofj, which is typically tens of nanoseconds.
the following, dimensionless quantities will be used, i.e.r
←r /j for length, t←t/t for time andv←vt/j for the ve-
2-2
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HYDRODYNAMICS OF PAIR-ANNIHILATING . . . PHYSICAL REVIEW E 66, 021712 ~2002!
locity. After doing so, the material parameters enter the eq
tions only through combinations given in Eqs.~17! and~18!.

Let us estimate the Reynolds number and the unsteadi
parameter of the flow, i.e., the ratio of characteristic dynam
times of the flow field and the order parameter field. T
estimate differs from those made in Refs.@14,15#, in that
now there is no simple relation between the characteri
deformation length~13! of the order parameter field and i
relaxation time. Instead, one can empirically identify the l
ter with the annihilation time. This yields the Reynolds nu
ber and the unsteadiness parameter of

Re5
rK

g1
2

R0
2

t
'10263

R0
2

t
, ~15!

whereR0
2 is the initial defect separation andt is the annihi-

lation time. The isotropic viscosity was put equal tog1 for
brevity. The value ofR0

2/t, obtained empirically, is of the
order of a few units. What is more, following the phenom
enological equation of motion given by Pleiner@16,17,11#,

dR

dt
}

1

R
ln21S R

j8
D , ~16!

whereR(t) is the actual defect separation andj8 scales with
j, the value ofR0

2/t exhibits only a weak logarithmic depen
dence onR. Thus, for large enough defect separations co
pared withj, the empirical estimate is quite general in v
lidity. In conclusion, the Reynolds number and t
unsteadiness parameter are tiny indeed, so that in Eq.~11!
both the advective and partial time derivatives can be om
ted.

III. NUMERICAL APPROACH

The coupled partial differential equations~9! and~11! are
solved using finite difference discretization. The outline
the method is as follows. At a given tensor field and its tim
derivative, the linear generalized Navier-Stokes equa
~11! is explicitly iterated in time until the velocity field be
comes stationary to a good enough accuracy. After t
knowing the velocity field, the tensor equation~9! is explic-
itly iterated in time to yield the new tensor field. Then th
velocity is updated again, and so forth. The variables
discretized on a staggered grid~@18#, p. 331! in order to
prevent the occurrence of the well-known oscillatory pr
sure solution. Hereby the tensor components are discret
in the central~pressure! points of the staggered grid. Th
incompressibility condition is satisfied in a standard way
solving a Poisson equation for pressure corrections~@18#, p.
340! at every velocity iteration step via a simultaneous ov
relaxation method~@19#, p. 655!. At the boundaries, norma
pressure correction derivatives are specified in order to m
the incompressibility condition there. The calculations we
done on an inhomogeneous square mesh, consisting of a
mesh of 1603160 points in the center containing both d
fects, and a coarser inhomogeneous grid with increas
spacing around it to yield the total of 2803280 points. The
position of the defects was determined by finding a lo
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minimum of the traceQi j Qi j .
The velocity was set to zero at the boundary. In order

meet the situation present in a bulk system, the defect s
ration was small compared to the size of the computatio
area~the ratio of the two was 3/20! and the derivatives of the
order parameter normal to the boundary were set to z
Initially, the Q tensor was set toQi j 51/2(3ninj2d i j ),
where n5(cosf,sinf) and f5(k51

2 mk arctan@(y2yk)/(x
2xk)#, which is the one elastic constant equilibrium direct
configuration with two defects of strengthmk positioned at
(xk ,yk). Afterwards, enough computing steps without t
hydrodynamics were performed to first establish the full te
sorial configuration. The initial defect separation was abo
70 correlation lengths, Eq.~13!, in order to reach the far
regime of motion, where the defects are well isolated. As o
realizes, there are three length scales in the system, w
should be well enough separated: the correlation length
the defect spacing as the relevant physical scales, plus
container size as the technical one.

The viscosity coefficients in Eqs.~6! and ~7! were ob-
tained from the standard Leslie coefficients correspondin
MBBA ~4-methoxybenzyliden-48-butylanilin! ~@20#, p. 231!
as described in Ref.@8#. Numerical values of the relevan
ratios are

m2 /m1'21.92, b1 /m1'0.17, b4 /m1'1.99,

b5 /m1'0.70, b6 /m1'20.79. ~17!

The Landau coefficientsA,B,C and the elastic constantL in
Eqs.~1! and~2! were taken from Ref.@21#. Numerical values
of the relevant ratios are

Aj2/L'20.064, Bj2/L'21.57, Cj2/L'1.29,
~18!

with the correlation length, Eq.~13!, j'2.11 nm. The char-
acteristic time, Eq.~14!, t'32.6 ns completes the set o
material parameters.

IV. RESULTS AND DISCUSSION

The results for the pair annihilation of61/2 defects~Fig.
1! are presented in Fig. 2. It should be pointed out that du
the high computational complexity of the problem and t
broad range of length scales involved, only defect sepa
tions of less than 1mm and annihilation times of less than
ms can be reached. This means that for the time being t
still exists a large gap between numeric capabilities and p
sible experimental observations.

In Fig. 2 one notices two distinct features: due to t
hydrodynamic flow the annihilation is faster and asymmet
Figure 3 shows that it is particularly the11/2 defect whose
motion is affected by the flow. Also clearly demonstrated
Fig. 3 ~see also Figs. 5 and 6! is the nonmonotonic behavio
of the defect velocities at early stages of the annihilation~@3#,
p. 58!. It is a consequence of starting with the equilibriu
configuration of fixed defects rather than with a dynam
one, which is being approached by the system in the cou
of annihilation. Since our simulations represent only the v
2-3
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D. SVENŠEK AND S. ŽUMER PHYSICAL REVIEW E66, 021712 ~2002!
late stage of an actual annihilation process, this nonmo
tonic behavior should be viewed as an unphysical artifac
the initial condition. In a separate work to follow, we sho
that it can be eliminated by starting with a proper dynam
configuration, even without throwing away computational
sources for simulating larger defect separations.

First, let us concentrate on qualitative features of
flow-driving mechanism by inspecting the stress tensors~5!
and~6!. One is tempted to explain the easily perceived ch
acteristic of the flow field@Fig. 4~a!#: due to advection the
11/2 defect is sped up, while the flow is much weak
around the21/2 defect.

As hinted by the previous work@14# and verified numeri-
cally, the ‘‘passive’’b1 , b5, and b6 terms in the viscous
stress tensor~6! ~or their counterparts in the standa
Ericksen-Leslie theory,a1 , a5, anda6), describing the de-
pendence of the fluid viscosity on the order parameter, g

FIG. 1. A schematic representation of a pair of61/2 defect
lines: the eigenvectors corresponding to the largest absolute e
value of Q ~directors! are depicted in the cross-sectional plan
perpendicular to the disclination lines. Two isomorphs~a! and ~b!
are shown, differing only in a homogeneous rotation of the dir
tors. For clarity, the number of mesh points has been reduced
factor of 4 in each dimension and the correlation length has b
increased by a factor of 2~only the central homogeneous region
the mesh is shown!.

FIG. 2. Position of the defects as a function of time, measu
from the initial middle point between the defects. Three situatio
are displayed: the two isomorphs~a! and ~b! ~see Fig. 1! and the
case without the flow~c!, where the isomorphs become degenera
We remember that length is measured relative toj'2.1 nm, and
time is measured relative tot'33 ns.
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only minor quantititative effects. Therefore one can igno
them in striving to gain a qualitative picture. On the oth
hand, the remainingm1 and m2 terms, which contain the
order parameter time derivativeQ̇, and also the elastic stres
tensor~5!, represent the source driving the flow and therefo
have to be analyzed carefully.

A. The flow asymmetry

At this stage, we are interested only in symmetries, i
the behavior of the stress tensor terms considered u
changing the order parameter field locally as to transform
11/2 and21/2 defects one into the other. In one elas
constant approximation, this can be achieved by mirror
the Q tensor on the axis joining the defects~the y axis,
Fig. 1! @10#: Qxy→2Qxy , since the free energy density~1!
is left unchanged by this procedure. Any stress tensor ter
invariant with respect to this transformation, treat both d
fects equally, and clearly do not contribute to the flow asy
metry. On the other hand, any noninvariant terms must
identified as the flow symmetry-breaking components.

By definition ~5! the elastic stress tensor is invarian
which is a direct consequence of the elastic isotropy. A
result, the flow field is the same for both defects@Fig. 4~b!#.
In addition, its direction is such as to reduce the interdef
separation and thereby the free energy of the system.
follows immediately from the definition of any stress tens

The viscous terms will be analyzed for the casev50, i.e.,
only the driving (Q̇-dependent! part in Eq.~8! will be con-
sidered. Them2 term has no definite symmetry for some
its components transform symmetrically and some antisy
metrically. At the defect spots the flow driven by this term
rather weak compared to the contribution from the oth
terms in question, becauseQ̇ is extremal there yielding a
vanishing divergence. Hence, them2 term does not give a
dominant contribution to the advective motion of the defec

n-
,

-
a
n

d
s

.

FIG. 3. Velocity of the defects as a function of the interdefe
distance@isomorph~a!#. For comparison, the same is shown for t
case without the hydrodynamic flow. The velocity of the11/2 de-
fect is strongly increased by the flow. Note the nonmonotonic
havior at early stages of the process, where the initial equilibri
Q-tensor configuration is adapting to a dynamic one~@3#, p. 58!.
The distance and the velocity are measured relative toj'2.1 nm
andj/t'65 nm/ms, respectively.
2-4
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HYDRODYNAMICS OF PAIR-ANNIHILATING . . . PHYSICAL REVIEW E 66, 021712 ~2002!
On the other hand, them1 term is fully antisymmetric
with respect to the transformation, yielding exactly the o
posite flow for the21/2 defect as compared with that ne
the 11/2 defect@Fig. 4~c!#. One notices that the flow is th
strongest at the defect positions in this case. Thus, du
advection this term alone can give rise to the flow asymm
try observed. One can verify by inspecting Eqs.~6! and ~7!
that the relative magnitude of this antisymmetric contribut
to the advective derivative term (v•“)Q in Eq. ~9! is ap-
proximately proportional tom1, provided that all other ma
terial parameters are kept fixed. On the other hand, sca
all viscosities equally with respect to the elastic const
leaves the dynamics unchanged completely and merely a
the characteristic time~14!, a statement based purely on d
mensional grounds~see Sec. II!.

In addition to the flow asymmetry, the annihilation pr
cess is also significantly sped up when compared to the
nihilation without the flow. Following the previous discu
sion, this effect is caused mostly by the elastic stress dri
flow. Thus, the annihilation dynamics offers a nice exam
showing the importance of the elastic stress in liquid crys
~LC!, which is usually considered less significant, e.g., in
cells. Additionally, the elastic andm1 viscous terms act in

FIG. 4. Flow fields resulting from different driving stress tens
terms: ~a! the complete stress tensor,~b! elastic stress,~c! the m1

viscous term, and~d! them2 viscous term. In all cases the isotrop
b4 viscous term is also included. For clarity, the number of me
points has been reduced by a factor of 4 in each dimension; only
central homogeneous region of the mesh is shown. The approxi
positions of defects are marked with circles; the radius of the de
core is roughly four grid points. The maximum velocity magnitu
vmax corresponding to the longest velocity vector is given for ea
flow field ~relative toj/t).
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concord near the11/2 defect, whereas for the21/2 defect
they combine destructively. This explains the different velo
ity magnitudes in the vicinity of the defects@Fig. 4~a!#.

B. Reorientation-driven defect motion vs flow advection

It is also of one’s interest to quantify the ratio of defe
motion due to advection as opposed to the motion prope
by the order parameter dynamics. Figures 5 and 6 show
the velocities in question are quite comparable in magnitu
Once again this reflects the importance of the flow in def
dynamics as compared with the limited perturbing effects
normally has, e.g., in LC cells@14#. Furthermore, one mus
realize that also a secondary flow effect besides advectio
important, namely, the influence of the flow on the ord
parameter dynamics. It is clear from Fig. 5 that the ord
parameter dynamics itself is faster because of the couplin
the flow. Comparing Figs. 5 and 6 one can state that
contribution of this coupling to the flow asymmetry is le
important than that of the advection, whereas its accelera
effect is just as important.

h
he
te

ct

h

FIG. 5. Velocity of the defects without the contribution of a
vection as a function of the interdefect distance. Without the hyd
dynamic flow, both defects move symmetrically. Note that the p
of the velocity coming from the order parameter dynamics is lar
for the21/2 defect. Also note the difference between the isomor
originating from the different coupling to flow and different flow
field itself, both of which are due to them2 viscous term.

FIG. 6. The advective contribution to the velocity of the defe
for the two isomorphic cases. The surprisingly large difference
tween the velocities of the11/2 defect is mainly due to them2

viscous term. At small separations not shown, the motion driven
the order parameter dynamics~Fig. 5! becomes dominant.
2-5
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C. Influence of the director orientation angle on the flow

In one elastic constant approximation, the free ene
density~1! and thus the order parameter dynamics are inv
ant with respect to a homogeneous rotation of the eigen
tem of theQ tensor in every space point. Consequently,
fect pairs, differing only in this constant phase angle
director rotation—isomorphs~Fig. 1!, behave exactly in the
same way~e.g., for the case of a11 defect such isomorph
are the radial and tangential defects, as well as any o
form between the two!. With the flow present, however, thi
symmetry is broken~Fig. 2!. It is quite instructive to study
the dependence of the important stress tensor terms u
such a rotation. Besides the elastic term~5!, the m1 pair of
terms is also left unchanged by the rotation. This is why
effect of advection should be roughly similar for all is
morphs. It is worth mentioning that also the influence of t
flow on theQ tensor given by them1 term in Eq.~7! is not
affected by the rotation.

On the other hand, them2 stress tensor term is not invar
ant. One can see in Fig. 6 that it introduces significant
ferences even as far as the advection of the defects is
cerned. For general isomorphs them2 term yields a flow field
lacking the symmetry of reflection on the axis joining t
defects. Additionally, them2 term in the viscous force~7! is
different for different isomorphs. It is due both to the diffe
ent coupling of the flow to the order parameter dynamics
to the differences in advection that the isomorphs are
equivalent dynamically. As verified numerically, theb1 , b5,
andb6 terms again bring only a very small difference.

V. CONCLUSION

We have studied the attraction and annihilation of strai
line defects with charge61/2 in bulk nematics. Our ap
proach is based on the tensorial generalization of the s
dard Ericksen-Leslie theory for nematic liquid crystals a
thus in direct contact with the concepts well accepted
.

.
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accustomed to in this area of research. It has been shown
due to the hydrodynamic flow, the annihilation is faster a
asymmetric. Further, we have identified the governing str
tensor terms: them1 and m2 viscous terms and the elast
stress. Symmetries of the terms upon inverting the sign of
winding number and performing a homogeneous in-plane
tation of the Q-tensor eigensystem have been discuss
Both them1 term and the elastic stress are invariant upon
rotation and hence identical for all isomorphs. Them1 term is
antisymmetric with respect to changing the sign of the
fects, thereby contributing dominantly to the annihilatio
asymmetry. On the other hand, the elastic stress is sym
ric, so that it causes the annihilation process to go on fas
The only terms distinguishing between different isomorp
are them2 terms in Eqs.~6! and ~7! ~they also distinguish
between the11/2 and21/2 defect!. Thus, one can conclud
that the difference in dynamics between the isomorphs
governed by the ratiom2 /m1. The remainingb1 , b5, andb6
terms in the viscous stress tensor~6! introduce only inferior
corrections to the flow field.

One should emphasize once more that due to length sc
several orders of magnitude apart and enormous comp
tional complexity of the problem, with the present meth
one is unable to reach the.1mm range of interdefect dis
tances, which can be resolved in experiments. Neverthe
it is quite reasonable to believe that the hydrodynamic effe
described in this paper, i.e., the flow asymmetry and the
duction of the annihilation time, will be present also at larg
defect separations.
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